
AWS Whitepaper

Amplify DataStore: Use Cases and
Implementation

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

Amplify DataStore: Use Cases and Implementation: AWS Whitepaper

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

Table of Contents

Abstract .. 1
Abstract ... 1

Introduction ... 2
Overview .. 3
Architecture .. 6

Amplify client libraries .. 6
Amplify CLI .. 6
GraphQL .. 6
AWS AppSync .. 6
Amazon DynamoDB ... 7

Implementation ... 8
Prerequisites .. 8
Schema .. 8
Idiomatic persistence ... 8
Cloud sync .. 9
Authorization rules ... 9
Events .. 9

Best practices ... 11
Clear offline data on sign-in and sign-out ... 11
Immutable models ... 11
Start developing your application in offline mode ... 11
Be aware of how schema changes affect offline data .. 12
Sync configuration with base and delta queries ... 12
Selective sync .. 12

Use cases and implementation ... 14
Messaging and collaboration ... 14
Real-time subscriptions ... 15
Retail inventory counting ... 16
Remote transportation tracking ... 17
Application feature update .. 18

Conclusion .. 20
Contributors ... 21
Document history .. 22
Notices .. 23

iii

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

Amplify DataStore: Use Cases and Implementation

Publication date: February 3, 2021 (Document history)

Abstract

Amplify DataStore is a persistent on-device storage repository for developers to write, read, and
observe changes to data. This whitepaper discusses the benefits, implementation details, and use
cases of Amplify DataStore. This information will help your solutions architects, tech leads, and
CTOs decide when and how to utilize Amplify DataStore in their solutions.

Abstract 1

https://aws.amazon.com/about-aws/whats-new/2019/12/introducing-amplify-datastore/

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

Introduction

If you develop applications, you need to think about low-latency message transmission and offline
synchronization. Your applications must not only deliver the required principal functionality, but
also must work under conditions where data needs to be shared in near-real-time or in locations
without internet connectivity.

For example, if someone sends a message on a chat application while the device lacks internet
connectivity, the application must store that message on the device. Once connectivity is
reestablished, the application must transmit it. This process can be complex to achieve, given
that developers need to implement the code that manages the device connectivity, stores the
information, and retries every time the internet access changes.

To meet these requirements, Amplify DataStore provides a programming model for leveraging
shared and distributed data without writing additional code for offline, real-time, and online
scenarios. This model makes working with distributed, cross-user data just as simple as working
with local-only data. It also allows your application developers to focus on features that
add business value rather than undifferentiated code to handle caching, reconnection, data
synchronization, and conflict resolution.

Amplify DataStore can be used as a local data store in web and mobile applications without
connecting to the cloud. When paired with AWS AppSync, Amplify DataStore synchronizes
the application data with an application programming interface (API) when network
connectivity is available. By automatically controlling versioning, conflict detection, and conflict
resolution; Amplify DataStore automatically leverages AWS AppSync to achieve near-real-time
synchronization between the devices and the cloud backend.

This guide discusses practical, real-life scenarios where developers, solutions architects, and
organizations can adopt Amplify DataStore in their mobile and web application development
process.

2

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

Amplify DataStore overview

Amplify DataStore allows your developers to focus on modeling their data and access patterns,
adding authorization rules, and business logic where necessary. The infrastructure deployment and
management are a function of these developer inputs. It is automatically deployed, monitored,
and managed by the Amplify Framework including code generation, command line interface (CLI)
rollouts, and runtime logic.

All DataStore operations are local first. This means that when you run a query, it returns results
from the local system, which can be sorted and filtered. The same is true for mutations or
observations to data. So, no network latencies or constraints on the backend are present.
Operations are run for your developers to integrate into your application. However, they still have
control to act upon things when the local store integrates back with the rest of the system, such as
reacting to data updates or write conflicts when merges take place.

Syncing takes place without any needed effort, including real-time updates when the device
is online. These updates are immediately present in any of your queries running locally or on
data being observed. Similarly, devices transitioning from offline to online states perform delta
synchronization on your behalf. This gives you control to perform logical actions if your mutations
conflict with writes that took place to the backend.

Your developers don’t need to worry about "subscribing to web sockets on the server" or "querying
for the latest changes". Instead, they use the DataStore API against their local data and all these
things happen automatically. So, all clients in the system behave in an eventually consistent
manner and will converge to the latest records that are written to your cloud database.

Being an on-device persistent repository, DataStore allows developers to interact with local data
while synchronizing it to the cloud. It leverages GraphQL to facilitate the data modeling process,
providing authorization rules and business logic when needed. This is offered to developers
through the Amplify CLI as well as by using the GraphQL Transformer.

Once the schema is defined, domain native structures called models, are generated. Your
developers can then use the DataStore API to save, query, update, delete, or observe changes.
The models are then passed to a Storage Engine, which is responsible for managing a repository
of models. The engine contains a Storage Adapter, which provides a bridge for popular
implementations, such as SQLite and IndexedDB.

3

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

Figure 1 – Local storage model

To sync the models to the cloud, developers can use the Amplify CLI to create an AWS AppSync
backend with Amazon DynamoDB tables that match the schema created at the application. Even
though DynamoDB is the default database used by DataStore, the developer can choose another
database to store the data by creating a custom AWS AppSync Resolver and data sources. Once the
application starts interacting with the DataStore API operations, DataStore starts an instance of its
Sync Engine, which will then interface with the Storage Engine to identify updates from the model
repository.

To manage updates from the local repository to the cloud and vice versa, both the Sync Engine
and the DataStore API subscribe to events published by the Sync Engine using the Observer
pattern. This is how the Sync Engine knows how to communicate data changes generated by
the application to the cloud. Similarly, this also allows developers to use the DataStore API to
identify data changes that happened on the cloud, generated by other users that are manipulating
applications that share the same underlying backend.

Figure 2 – Cloud sync process

4

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

If data synchronization to the cloud is enabled through AWS AppSync, multiple versions of the
same object can exist on the client and on the server. This creates a need for the object to be
resolved on the cloud, so a single version exists. When concurrent updates are sent from multiple
clients at the same time, developers can configure conflict resolution to create strategies to
define how the data is going to be stored. At this point, DataStore will apply conflict detection
and resolution strategies to the data. Developers can choose between Automerge, Optimistic
Concurrency, and Lambda.

Amplify DataStore supports iOS, Android, Flutter, and client JavaScript frameworks. This means
that developers can build a single data schema design for multi-platform applications. From that
schema, the Amplify CLI can generate models that fit solutions built in all these platforms.

5

https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html
https://docs.aws.amazon.com/appsync/latest/devguide/conflict-detection-and-sync.html

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

Amplify DataStore architecture

Amplify DataStore relies on multiple components to deliver offline capabilities, near-real-time
connectivity between devices, and conflict resolution. This section details these components and
explains how they work together.

Amplify client libraries

The Amplify open-source client libraries provide purpose-built interfaces that act as a wrapper for
helping the communication between the application code and the cloud backend. The libraries
can be used both with new backends created using the Amplify CLI and with existing backend
resources. Amplify DataStore is supported by the iOS, Android, Flutter, and JavaScript client
libraries.

Amplify CLI

The Amplify Command Line Interface (CLI) is a unified toolchain to create, integrate, and manage
the AWS Cloud services for your application. With the CLI, developers can create data models using
the GraphQL Transform library and deploy them to AWS AppSync GraphQL API operations, and
NoSQL databases. The CLI also helps developers manage the DevOps process from start to finish
by facilitating the deployment of immutable cloud backends into multiple environments (such as
development, QA, and production).

GraphQL

To create a data store, developers need to define a schema. A schema is a structured representation
of the developer’s models, containing their data types and relationships. GraphQL schema files are
used to represent these models at the application level.

Once the schemas are defined, developers can use the CLI to convert the schema into
CloudFormation templates. These templates are responsible for creating a cloud backend
representation of the models.

AWS AppSync

AWS AppSync is a server-side managed component leveraged by Amplify DataStore to provide
simplified access, querying, real-time updates, offline synchronization, caching, security, and fine-

Amplify client libraries 6

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

grained access control of the application data. The CLI is responsible for creating and configuring
AWS AppSync based on the GraphQL schema files, defined at the application level. It provides an
interface to NoSQL databases, relational databases, and AWS Lambda functions. The CLI is also
responsible for data synchronization and conflict resolution for applications to sync data to the
cloud.

Although Amazon DynamoDB is Amplify DataStore’s default database solution, developers can
create AWS AppSync resolvers to use different purpose-built database offerings provided by AWS.

Amazon DynamoDB

Amazon DynamoDB is a key-value and document database that delivers single-digit millisecond
performance at any scale. It's a fully managed, multiregional, multimaster, durable database
with built-in security, backup and restore, and in-memory caching for internet-scale applications.
Using the CLI, developers can automatically create tables representing the schema defined at the
application level on DynamoDB.

Although DynamoDB is Amplify DataStore's default database solution, developers can create AWS
AppSync resolvers to use different purpose-built database offerings provided by AWS.

Amazon DynamoDB 7

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

Amplify DataStore implementation

In this section, we cover the parts that define an implementation of Amplify DataStore, relying on
platform standard data structures to represent the data schema in an idiomatic way.

Prerequisites

Amplify DataStore requires the following prerequisites for each platform:

• Installing and configuring the libraries for your development platform

• Configuring the Amplify CLI to set up the local development environment

For more information, see the Amplify documentation for JavaScript, Android, iOS, and Flutter.

Schema

The first step to create an application backed by a persistent datastore is to define a schema.
DataStore uses GraphQL schema files as the definition of the application data model. The
following schema contains data types and relationships that represent the application’s
functionality. In this example, the schema represents a whitepaper.

type Whitepaper @model {
 id: ID!
 title: String!
 status: PostStatus!
 pages: Int
 year: Int
}

enum PostStatus {
 DRAFT
 PUBLISHED
}

Idiomatic persistence

After the platform-agnostic model is created, the developer can use the Amplify CLI to generate
the code associated to the model’s platform standard data structure to represent the data schema

Prerequisites 8

https://docs.amplify.aws/lib/datastore/getting-started/q/platform/js
https://docs.amplify.aws/lib/datastore/getting-started/q/platform/android
https://docs.amplify.aws/lib/datastore/getting-started/q/platform/ios
https://docs.amplify.aws/lib/datastore/getting-started/q/platform/flutter

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

in an idiomatic way. By configuring and initializing Amplify DataStore, the application is ready to
start defining persistence operations using the model.

Also, leveraging platform-specific code, the persistence language is composed by data types that
satisfy the model interface, generated automatically using the CLI, and operations defined by
common verbs such as save, query, observe, and delete. DataStore also has the capability to handle
relationships between models, such as has one, has many, and belongs to.

Cloud sync

To allow communication between multiple devices, there must be synchronization between offline
and online data. The Amplify DataStore goal is to facilitate the process of the application when
handling online and offline scenarios, handling all data consistency and reconciliation between
local and remote behind the scenes. This allows developers the opportunity to focus on application
logic.

Using AWS AppSync, Amplify DataStore guarantees that the local application data is synchronized
with a cloud backend. DataStore can also connect to an existing AWS AppSync backend that has
been deployed from another project, no matter the platform it was originally created in.

DataStore makes the process of data synchronization as transparent as possible to developers.
However, considerations are required for some scenarios where local data might be out-of-sync
with the backend, generating conflicts locally and on the cloud. Conflict resolution is a strategy
that AWS AppSync uses to manage multiple versions of the same object on the client and server, as
mentioned in Amplify DataStore Overview .

Authorization rules

Amplify can also give developers the ability to limit which individuals or groups should have access
to create, read, update, or delete data on your types by specifying an authorization directive.
This limits the model access to an owner, group, make it public or private, based on AWS IAM or
Amazon Cognito User Pool or a third-party provider, using an OpenID Connect (OIDC) provider.

Events

If the device has pending data to be synchronized, loses or regains connectivity, or synchronizes
the local data with the cloud, DataStore publishes a set of states that can be captured by the

Cloud sync 9

https://docs.amplify.aws/lib/datastore/setup-auth-rules/q/platform/js

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

application. The developer can then choose to add business logic to these events. For example, if
the application needs to show the user that a particular model has synced with the backend, the
developer can create a listener to the modelSynced event and notify the user, after that. For a list of
events, see the documentation for JavaScript, iOS, Android, and Flutter.

Events 10

https://docs.amplify.aws/lib/datastore/datastore-events/q/platform/js
https://docs.amplify.aws/lib/datastore/datastore-events/q/platform/ios
https://docs.amplify.aws/lib/datastore/datastore-events/q/platform/android
https://docs.amplify.aws/lib/datastore/datastore-events/q/platform/flutter#outboxstatus

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

Amplify DataStore best practices

Clear offline data on sign-in and sign-out

We recommend that you clear out user-specific data for shared device scenarios. This prevents
security and privacy issues. If the application has authentication enabled and your schema defines
user-specific data, make sure to clear the data stored during a previous session. Developers can do
this by calling the DataStore.clear() API method.

Immutable models

Models in DataStore are immutable. Manually forcing a synchronization with the backend is not
possible. The following example shows how to create a record:

await DataStore.save(
 new Whitepaper({
 title: "Amplify DataStore – Use cases and implementation",
 pages: 30,
 year: 2021
 })
);

To update a record, you must use the copyOf function provided by your library of choice to apply
updates to the item’s fields rather than mutating the instance directly.

const original = await DataStore.query(Whitepaper, "123");

await DataStore.save(
 Whitepaper.copyOf(original, updated => {
 updated.title = `title ${Date.now()}`;
 })
);

Start developing your application in offline mode

To avoid updating the cloud backend, it is a recommended practice to develop the application
on offline mode until the developer is comfortable with the schema defined. After the model

Clear offline data on sign-in and sign-out 11

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

is considered stable, the cloud synchronization can be enabled, and the local data will be
automatically synchronized with the backend.

Be aware of how schema changes affect offline data

If the developer decides to modify the application’s schema, Amplify DataStore will evaluate
at start-up to decide if these changes impact the storage structure of the application already
deployed to users. If it confirms that the schema lost its integrity, DataStore will remove the items
stored and will perform a sync with the backend if cloud sync is enabled.

Sync configuration with base and delta queries

If cloud sync is enabled, at the first application start, the Sync Engine will run a GraphQL query
that populates the Storage Engine from the network using a base query, which is the Sync Engine’s
most basic form of synchronization that retrieves the baseline state of your records. This will
replicate the current state of your backend with your client application. If your solution relies on
a limited amount of data, this solution could fit your needs and you might want to continue to
replicate the backend constantly.

For cases where the solution relies on large datasets and the connectivity on the client changes
frequently, the base query might become cumbersome and your application could face
performance issues. For this scenario, a second query can be performed, called a delta query. The
delta query guarantees that, once the base query runs and hydrates the cache for the first time, on
every network reconnection only the changed data is captured.

Selective sync

To download and persist only a subset of the data, developers can benefit from a selective
synchronization approach. This will limit the number of records that your application collects from
the backend by filtering them by expressions or by limiting the number of items that will be stored.
This strategy can be applied per device and user, meaning that you can have different rules for
different use cases. For example, if an application needs to display multiple alert levels that groups
of users can handle separately, developers can create the following:

DataStore.configure({
 syncExpressions: [
 syncExpression(Post, () => {

Be aware of how schema changes affect offline data 12

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

 return alert => alert.level('gt', 5);
 })
]
});

This will guarantee that only alerts with levels that are greater than 5 will be synced to the device’s
local storage.

Selective sync 13

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

Use cases and implementation

Messaging and collaboration

Current businesses require real-time collaboration between multiple parties. Messaging and
collaboration applications are essential tools to enable business processes and workflows.

Figure 1 – Amplify DataStore messaging and collaboration use case with custom conflict resolution

1. Multiple users use messaging and collaboration applications. Each user creates, reads, updates,
and deletes data at the application level. Some users can be offline (for example, on a flight or
inside a subway with limited connectivity).

2. Amplify DataStore receives the data on each user's local devices, both for online and offline
users.

3. AWS AppSync synchronizes data between online users. When offline users come back online,
there might be conflicts between data updated by offline users and online users.

4. AWS Lambda provides custom business logic to resolve the conflict and instruct AWS AppSync
resolvers to update the data based on AWS Lambda function decisions.

5. Data is updated into Amazon DynamoDB in the backend.

By default, Amplify DataStore supports Auto Merge and Optimistic Concurrency conflict resolution.
Developers can also build their custom conflict resolution strategies with Custom Lambda

Messaging and collaboration 14

https://docs.amplify.aws/lib/datastore/conflict/q/platform/js
https://docs.amplify.aws/lib/datastore/conflict/q/platform/js
https://docs.amplify.aws/lib/datastore/conflict/q/platform/js#custom-conflict-resolution

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

functions. When all devices are back online, they will be sharing the same underlying local data,
without conflicts.

Real-time subscriptions

Amplify DataStore supports real-time subscriptions for different use cases.

Figure 2 – Amplify DataStore and real-time subscription use cases

1. Subscription applications are used to receive updates about specific changes in data. Each user
accessed the applications from web browsers or native iOS or Android applications. Amplify
DataStore libraries are used to build the subscription features.

2. Amplify DataStore sync-engine creates a secure WebSocket connection to AWS AppSync.
Developers don’t have to write and maintain WebSocket code because Amplify DataStore
libraries provide this functionality.

3. AWS AppSync synchronizes the subscription requests and provides subscribed data to Amplify
DataStore.

4. AWS AppSync resolvers process the data request to different data backends, such as AWS
Lambda, Amazon DynamoDB, Amazon OpenSearch Service, HTTP endpoint, or local publish/
subscribe messaging service.

Real-time subscriptions 15

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

Retail inventory counting

Physical inventory counting is a challenge for most organizations. It’s a task that still requires
manual interaction from employees and a very mature level of organizational skills to establish a
successful process. A small or medium-sized organization usually stores products in display and a
warehouse, spread in multiple rooms, bins, and boxes. This makes the counting process complex.

With Amplify DataStore’s observe and data sharing capabilities, multiple users can perform the
inventory counting process simultaneously at different places. All the information entered at the
application will be shared instantly between devices, keeping all users in sync. In this particular
case, the data also needs to be persisted on SAP, a popular enterprise resource planning (ERP)
system.

The following example could also work with different ERP systems or databases.

Figure 3 – Amplify DataStore retail inventory use case

1. The process begins with a user counting a particular product at a warehouse using a mobile
application. This product is spread throughout many bins, so multiple people are adding up the
same type of item simultaneously.

2. The data is stored locally at the device level using the Storage Engine provided by Amplify’s
libraries.

3. Amplify DataStore uses AWS AppSync to write and observe modifications that are made to the
underlying data. AWS AppSync is mainly responsible for syncing the data stored at the device
with the cloud.

Retail inventory counting 16

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

4. The data is stored at DynamoDB tables, which are also managed by AWS AppSync. At this point,
the data stored in DynamoDB can be further used on different applications and workloads.

5. AWS AppSync calls a Lambda Resolver to update the inventory on the ERP system, in this case
represented by SAP.

6. Because AWS AppSync is also responsible for observing the underlying changes in the data
stored, the devices that leverage the Amplify libraries are notified of a modification on the data
that they are set to observe. At this point, all devices have the same information provided by the
user during the first step.

Remote transportation tracking

Let’s use an example scenario. A large company in Texas needs to manage the transportation of
goods and services to multiple oil fields. Over one thousand shipments are made daily by various
trucks on a 24/7 operation. This process needs to be closely monitored by the oil field managers
who expect the shipment to arrive on time, the logistics manager who keeps the fleet organized,
and the incident response team responsible for the security of the drivers and trucks.

An application responsible for managing these shipments needs to function in remote locations,
where internet connection can be scarce. Amplify DataStore offers offline storage, maintaining the
drivers' application functions when they lose cellular or Wi-Fi connectivity, and real-time updates
as soon as the connection is restored. These capabilities prevent the work from being hindered
because it allows the application to be fully functional in online and offline scenarios.

Remote transportation tracking 17

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

Figure 4 – Amplify DataStore transport tracking use case

1. A driver who is responsible for delivering a shipment to an oil field in West Texas uses a mobile
application to track his truck's current location and the status of this delivery. Because his device
is offline due to poor cellular connectivity in the area, the mobile app uses DataStore API’s
Storage Manager to keep that data stored at the device level, for the duration of the period
where the device is offline.

2. Once the device reaches an area with cellular coverage and an internet connection is detected,
Amplify DataStore instantly uses the Sync Engine to transmit the data to AWS AppSync.

3. AWS AppSync manages the underlying DynamoDB tables, where the shipment information
is persisted. From there, the data can be provided to the logistics manager and the incident
response team.

4. The Transportation Management Application uses the same backend created for the mobile
application, thus observing changes for every trip that is synced to the cloud. This application
provides dashboards for oil field managers, logistics operators, and the security response team
to visualize the trips in real time and make quick decisions based on events.

5. The ETA Service collects data from the mobile devices and calculates the estimated time of
arrival for each shipment. When the ETA is calculated, the value is updated to DynamoDB.

6. Events generated by the trips (change in ETA, for example) use Amazon Simple Notification
Service (Amazon SNS) to notify users of the event.

Application feature update

A global retail company wants to test a new idea from its marketing team. The idea is to enable a
simplified purchasing flow targeting customers from selected regions of the world.

The company already has the data about the customer’s location and wants to silently enable
the feature to them, without the need to keep multiple versions of the application available for
download. In the end, they need to select a few customers, enable the feature, and handle the
modified flow on the application side.

The company can flag certain customers on the database and, using the observe functionality, the
application will detect the changes and modify itself to present the new flow, without requiring
users to download an updated version of the application.

Application feature update 18

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

Figure 5 – Amplify DataStore application feature update use case

1. The marketing team wants to modify the purchasing flow of the user population identified as
User B on the diagram. They use an admin console that uses the same backend that was created
for the mobile application.

2. AWS AppSync manages the underlying DynamoDB tables, where the information is persisted.
From there, AWS AppSync syncs the data with Amplify DataStore.

3. The devices running the mobile application with Amplify DataStore’s libraries observe the
changes and adapt, based on the rules provided by the market team.

Application feature update 19

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

Conclusion

AWS Amplify is a set of products and tools that enable mobile and front-end web developers
to build and deploy secure, scalable full-stack applications. With Amplify, you can configure
application backends in minutes, connect them to your application in just a few lines of code, and
deploy static web applications in a few steps.

Developers can benefit from Amplify DataStore with various applications that require offline
capabilities and near-real-time sync between devices. This whitepaper offers a first step to help
users understand the functionalities behind DataStore, implementation practices, associated AWS
services, and use cases that can help you decide if the technology is a good fit for your application
and your organization.

Without the need to write undifferentiated code to manage offline and online scenarios, you
can benefit from a multi-platform on-device persistence storage available for JavaScript, iOS,
Android, and Flutter. DataStore automatically synchronizes data between your application and a
cloud backend, powered by AWS. This makes it simple for your developers to build user-centric
applications and rely on an offline-first approach.

20

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

Contributors

Contributors to this document include:

• Fernando Rocha Silva, Solutions Architect, Amazon Web Services

• Ivan Artemiev, Software Development Engineer – Mobile Applications, Amazon Web Services

• Ashish Nanda, Software Development Engineer – Mobile Applications, Amazon Web Services

• Richard Threlkeld, Principal Front-End Engineer – Mobile Applications, Amazon Web Services

• Sigit Priyanggoro, Sr Partner Solutions Architect, Dedicated Edge, Amazon Web Services

• Steve Johnson, Tech Leader – Mobile, Amazon Web Services

• Brice Pellé, Principal Solutions Architect – Mobile, Amazon Web Services

21

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

Document history

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Initial publication Whitepaper first published February 3, 2021

22

Amplify DataStore: Use Cases and Implementation AWS Whitepaper

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

23

	Amplify DataStore: Use Cases and Implementation
	Table of Contents
	Amplify DataStore: Use Cases and Implementation
	Abstract

	Introduction
	Amplify DataStore overview
	Amplify DataStore architecture
	Amplify client libraries
	Amplify CLI
	GraphQL
	AWS AppSync
	Amazon DynamoDB

	Amplify DataStore implementation
	Prerequisites
	Schema
	Idiomatic persistence
	Cloud sync
	Authorization rules
	Events

	Amplify DataStore best practices
	Clear offline data on sign-in and sign-out
	Immutable models
	Start developing your application in offline mode
	Be aware of how schema changes affect offline data
	Sync configuration with base and delta queries
	Selective sync

	Use cases and implementation
	Messaging and collaboration
	Real-time subscriptions
	Retail inventory counting
	Remote transportation tracking
	Application feature update

	Conclusion
	Contributors
	Document history
	Notices

